Ptychographic Inversion and Uncertainty Quantification using Invertible Neural Networks

Agnimitra Dasgupta and Zichao Wendy Di

USCViterbi

SIAM Conference on Uncertainty Quantification April 13, 2022

Ptychography

Lensless, scanning, coherent diffraction imaging technique

Inverse problem

Complex object: $\mathbf{z} = \mathbf{x} + i\mathbf{y} \in \mathbb{C}^{n \times n}$

Data – **diffraction patterns:** $\mathbf{d} = f(\mathbf{z}) + \epsilon$

 $d_j = |\mathscr{F}(\mathbf{P}_j \mathbf{z})|^2 + \epsilon_j, \quad j = 1,...,N$

Scanning overlapping regions makes inversion possible

Traditional approach:

point estimates, no indication of solution quality

$$\min_{z} \frac{1}{2} \sum_{j=1}^{N} \left\| \left\| \mathscr{F}(\mathbf{P}_{j}\mathbf{z}) \right\| - \sqrt{\mathbf{d}_{j}} \right\|_{2}^{2}$$

Challenges:

High dimensionality, non-convex, nonlinear forward model

Bayesian Inversion

Account for all possible solutions through the posterior distribution :

Variational inference

 $\pi(\mathbf{z} | \mathbf{d}) \approx \pi(\mathbf{z}; \mathbf{d}, \theta)$

Need an expressive model to capture the complicated posterior

Use **normalizing flows** to approximate the posterior

Normalizing flows

Kobyzev, Ivan, Simon JD Prince, and Marcus A. Brubaker. "Normalizing flows: An introduction and review of current methods." *IEEE Transactions on Pattern Analysis and Machine Intelligence* 43.11 (2020): 3964-3979.

Invertible neural networks

Flow = Activation normalization + permutation + coupling layer

Proposed approach

Sun, H., & Bouman, K. L. (2020). *arXiv preprint arXiv:2010.14462, 9*. Ardizzone, L., et. al. (2018). *arXiv preprint arXiv:1808.04730*.

Synthetic object

Ground truth

Mean

Std. Dev.

Absolute error

Probe

Object is scanned 25 times Overlap ratio : 0.8 1% noise in measurements

Reconstruction from rPIE

Mag.

Multi-modal posterior

Synthetic object

Complex Probe

Numerical study:

- 1. Probe is of size 36 X 36
- 2.Object is scanned 64 times
- 3.64 X 36 X 36 measurements
- 4. 3 settings with different FOV
- 5.1% noise in measurements

Multimodal posterior

We observed that the NF model was able to capture **two modes** of the posterior

Increasing overlap reduces uncertainty

Scan	FOV	Overlap	Recon. Mag. PSNR		Recon. Phase SSIM
Setting	n	Ratio	NF Mode 1	NF Mode 2	rPIE
S1	50	0.94	26.69/0.48	26.64/0.54	26.82/0.25
S2	78	0.83	22.77/0.20	23.66/0.39	23.08/0.18
S3	92	0.78	21.20/0.50	22.69/0.44	22.32/0.16

Good reconstructions compared to rPIE + Uncertainty Quantification

Conclusions and outlook

Summary:

1. Normalizing flows enable ptychographic inversion via variational inference.

- 2. Good reconstruction with uncertainty quantification
- 3. Multimodal solution characterization

Future directions:

- 1. Interpret the modes of the posterior
- 2. Scalability to larger problems
- 3. Exploiting partial data for local solution

Paper

Acknowledgements

This material was based upon work supported by the U.S. Department of Energy under contract DE-ACO2-O6CH11357. The first author also acknowledges the support of the Provost Fellowship from the University of Southern California and the SIAM Student Travel Award courtesy of the National Science Foundation.